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SUMMARY 

In an attempt to resolve some controversies in published data, a theoretical 
model of the separation mechanism in gel permeation chromatography has been 
developed and tested. The model includes the effects of diffusion, both internal and 
longitudinal, and of steric exclusion; by using the concept of an impermeable bound- 
ary inside the particles of the packing, the model takes into account, in an elementary 
manner, the effect of the complicated geometrical form of pores. The dependences of 
the elution volume (characterized by the volume partition coefficient, Kopc) and of 
,the height equivalent to a theoretical plate on relevant parameters of the model have 
been derived. The calculated dependence of the column efficiency on the elution vol- 
ume is in good agreement with the experimental curves. 

INTRODUCTION 

In contrast to the chromatography of low-molecular-weight compounds, for 
which the theory has been developed in great detail and is complete, the theory of the 
gel permeation chrqmatography (GPC) of macromolecules is still in an unsatisfactory 
state, as indicated by a number of unexplained or controversial results. Thus, for in- 
stance, nobody has so far offered a satisfactory explanation of the fact that the 
dependence of the column eficiency on the elution volume sometimes exhibits a 
minimum, while ?n other cases it increases monotonically. Further, it follows from 
the general theory of chromatography *q2 that the retention volume of a given com- 
pound (if consistently expressed by the first statistical moment of the elution curve2v3 
and not by the position of’ its maximum, which, especially in asymmetrical zones, 
has no physical meaning) is given only by the equilibrium coefficient that charac- 
terizes the partitioning of the component betwee! the mobile phase and the carrier. 
Yau et a/.4 found that the latter statement was fulfilled if porous glass was used as 
GPC packing, but observed important discrepancies between the equilibrium and 
dynamic behaviour, particularly of high-molecular-weight polystyrene standards on 
Styragel columns. This suggests that the differences in the pore type and geometry 
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between various carriers can affect considerably the course of separation. The same 
conclusion was also reached by Berek et a/.s who, in their study of porous silica gels 
of various origins as GPC packings, demonstrated that there is no simple relationship 
between the pore size distribution and the shape of the calibration graph. Hailer” 
found experimentally that both for low-molecular-weight and for extremely high- 
molecular-weight components the equilibrium measurements and the measurements 
of the sorption kinetics agree with the elution behaviour on columns, but for solutes 
of medium molecular weight the discrepancy between the results obtained by both 
methods and tile measured:retention volumes is so large that it cannot be explained 
in terms of any of the existing theories. 

A model of the mechanism of separation in GPC of polymers suggested in this 
paper takes into account, in an elementary manner, the fact that the pores in the pack- 
ing do not have a simple geometrical shape. An explicit dependence of the separation 
efficiency on the molecular weight of the polymer has been derived and found to be 
in good agreement with experimental results taken from the literature. The possibilities 
offered by the model for a qualitative explanation of some experimental discrepancies 
have been demonstrated. 

THEORETICAL 

It is very difficult, if not impossible, to include the effect of the complicated 
geometrical shape of pores in the theory of chromatography in an exact manner. 
Fig. la shows schematically the shape of a real pore; it implies that also for molecules 
smaller than the mean pore diameter, d, the probability of a given molecule penetrating 
to any depth of the particle will decrease with the effective diameter of the molecule 
owing to random fluctuations in the cross-section of the real pore. A possibility there- 
fore arises to include the complicated pore geometry in the theoretical analysis by 
using a simple model concept, which states that, for a given molecule, only a certain 

a 

b 

Fig, 1. Penetration of particlcs of different six into the port of a complicated 
(a) Schematic representation of cross-section of real pore; (b) its idealization. 

geometrical shape. 
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surface layer of the spherical grain is accessible; the thickness of this layer, dR (cj:, 
Fig. 2), is a function of molecular weight. 

As a consequence, the problem under consideration is divided into two parts: 
(a) solving the system of partial differential equations that describe the dynamics of 
elution on a chromatographic column packed with spherical particles with an internal 
inaccessible core; (b) derivation of a functional dependence of the radius, R, of this 
core on the molecular weight (size) of particles undergoing separation by using an 
adequately chosen model of a real pore, 

Fig. 2. Spherical particle of the packing (diameter &) with the internal impermeable core (diamctcr 
RI. The hatched area rcprescnts the outer layer accessible to molcculcs of a given size. 

Chromatography 011 a carrier with an inaccessible core ” *’ 
The elution dynamics of a given component on a chromatographic column 

packed with spherical particles of diameter R. is described by a partial differential 
equation’: 

a% ac D,.___ - M’.- - - 
ax (1) 

where D, (cm2/sec) is the coefficient of longitudinal dispersion, c (g/ml) is the concen- 
tration of the respective component in the mobile phase, C is the concentration of the 
same component in the sorbent, x (cm) is the distance from the front of the column, 
IV (cm/set) is the linear velocity of the solvent flow, D (cm2/sec) is the diffusion coef- 
ficient in the particle, I* is the radial coordinate in the grain with the origin in the centre 
of the sphere, t is time and H = (1 - a)/~, where a is the fractional free cross-section 
of the column. This equation should be solved together with the differential equation 

(2) 

which controls the rate of diffusion of thc..given component in the spherical grain of 
the packing, and with the boundary conditions 

I = 0, s B 0. C’ = c = 0 (3a) 

t >- 0, I' = Ro, C = kc WI 

I > 0, I'= R,(ac/ar, = 0 (3c) 

0 < t Q to, x = 0, c = co (3d) 

I > to, x = 0, c = 0 CW 
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According to condition Sb, an equilibrium is assumed to exist on the surface of the 
sorbent grain between the concentration of the given component in the free cross- 
section of the column and the concentration inside the sorbcnt (k is the equilibrium 
partition coefficient). Conditions 3d and.3e descr+be the situation at the top of the 
column at the time of sample injection (for a short time lo, a sample with a constant 
concentration co is injected). A new feature of this model is condition 3c, which 
expresses zero flux through the spherical surface, r = R. 

Following the procedure outlined in earlier papersz*3, we shall treat this 
boundary value problem by using the Laplace-Carson transformation. Let us define 
the Laplace-Carson transforms of the functions c(x,t) and C(x,r,t) by the relationships 

and 

tion 2 

where 

S(x,r,p) = .Y{C(x,r,t)} = po@C(x,r,r) e-p’ dt (4) 

s(x,p) = Z{c(x,!)} = poJWc(x,‘) e-p’ dr (5) 

The solution for a subsidiary equation corresponding to the differential equa- 
can be written as 

S = r-l [A sinh (Ir) + B cash (Ir)] (6) 

jl = (P/W (6a) 

and the integration constants A and B calculated from the boundary conditions 3b 
and 3c have the form 

A = R,ks. 
cash (AR) - RE. sinh (AR) 

R1 cosh~il(R, - R)] + sinh [;l(Ro - R)] (7) 

B = R&s * 
RA cash (AR) - sinh (AR) 

Ril cash [il(Ro - R)] + sinh [n(R, - R)] 

By differentiating eqn. 6 and substituting into a subsidiary differential equation 
corresponding to eqn. 1, we obtain a second-order differential equation with constant 
coefficients : 

d2s w ds -_-.- 
dx2 D, dx - + [l + g(p)1 A- = 0 

P 
the solution of which (with respect to conditions 3d and 3c) can be written as 

S(X#) = co (1 - eepco ) exp (-TX) (10) 

where 

q=- + 
P 

+ { ($-)” + & [I -I- ml)* (11) 



GPC OF MACROMOLECULES 5 

Tn eqns. 9 and 11, the term g(p) is given by 

3Hk 
6(P) = -@$-- ’ 

dR cash (MR) + (R,,Ril - A-‘) sinh (Ulf?) 
R1 cash (MR) + sinh (UR) (12) 

where 

AR=R~--R (13) 

The position of the chromatographic band on the time axis is characterized by 
the first statistical moment about zero of the elution curve c(.u,I), i.e., by the quantity 

~1; = (l/c&,) ,s” t C(W) dt (14) 

The width of the band is characterized by its second central moment ,uz (variance): 

P2 = 11; - !q (15) 

where 

,u; = (1 /c&J ,sm f2c(x,t) dr ’ (16) 

[The factor (c&,)-l normalizes the elution curve so as to make ,u’,, = 0.fm c(x,f)dt = 
I.] As shown earlier2, the moments pCln can be calculated directly from the Laplace- 
Carson transform of the elution curve according to the equation 

lu:,= (-- I)” (c,lo)” ;z + [F] (17) 

It is easy to demonstrate, by applying operator 17 to eqn. 10 (and taking into account 
eqns. 11 and 12) that at the column outlet 

and 

p2 = + D,* 
/I + vz ob)12 

lim dg (p) ‘Oz 
w2- - 

-- 
p-to dp +12 

(18) 

(1% 

where I is the length of the chromatographic column. 
By substituting for the respective derivatives and limits, we obtain 

14; = 4 /I + Hk (1 - $>I 

21 I 
cc2 = -y +. 

[l + H/c (I - $)I2 + ; 
W2 

&H/c (1 - QW - G(e)1 

where the new dimensionless parameter Q (0 < ,n < 1) is defined, by 

o = R/R,, c 

(20) 

I 6 
-I- 12 (21) 

(22) 
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and characterizes the maximum depth of penetration of the given particles into the 
grain of the packing. For the function G, 

(23) 

Let us now pass from the variable I to the more common independent variable V 
(elution volume): 

V =I uwFt (24) 

where F(cm2) is the total cross-section of the (empty) column. Let us restrict ourselves 
to a case when the injection time, lo, is negligibly short, i.e., lo -> 0. I,f v, are the mo- 
ments of the elution curve with respect to the variable V, then8 (consideringeqn. 24) 

I’,, = (UWF)” p,, (25) 

As u/F = V,, (V. being the void volume of the column) and (1 - cz)r/ is equal to the 
total volume of the packing, V,,, we obtain for the retention volume, VR (defined as 
the first statistical moment of the elution curve with respect to the independent 
variable V). a relat;onship in the, usual form: 

v; S V/I = Vo + &PC V,J 

For the coethcient Kopc, the theory yields an 

Ko,,c = k (I - e”) 

explicit relationship : 

(26) 

(27) 

The separation efficiency can be characterized by the height equivalent to a 
theoretical plate (HETP), which is defined in terms of the moments of the elution 
curve by 

HETP =-i /*$2- 
I 

By combining eqns. 21 and 25-28. the following expression is derived for HETP: 

HETP z: +- 

(28) 

2 R,Z Nk(1 -@eJ) 
-+ ““--i-55 ’ [ 1 + N/c (1 - &?)I2 -a 11 - WJ)I (2% 

In order to compare the above relationships with experimental results obtained 
by studying the behaviour of macromolecular solutes on GPC columns, it is necessary 
to derive the dependence of the thickness of the accessible surface layer (characterized 
by the dimensionless parameter c)) on the molecular weight of the solute. For this 
purpose, it is necessary to choose a suitable model of the real pore geometry. In this 
paper, relationships are derived for the simplest case of a conical pore9 and for the 
model of a pore with ;I randomly fluctuating cross-section. 
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Conical pore 
We shall assume that the molecules in solution are approximately spherical 

and their size can be characterized by the effective hydrodynamic radhls, R,,. AC- 
cording to Porath’s model of a conical pore9. we also assume that c, and R,, are 
proportional, that is, Q = R/R, = KR,,. The effective hydrodynamic volume of a 
polymer coil is proportional to the product [q]M; after substitution for the intrinsic 
viscosity to] from the -Mark-Houwink equation, we have R,, = K’W+Qtl (K and K’ 
being proportionality constants): by combining the two latter expressions, we obtain 
the required dependence between p and M in the form 

where KQ is an as yet unknown coefficient of proportionality and u,/ is the Mark- 
Houwink exponent. 3 , 

Pore model tvitlt a randomly flucrunfing cross-scctioll 
In order to obtain a more realistic model, let us start from a schematic view 

of a real pore according to Fig. la. Let us assume that a pore with a diameter d con- 
tains partitions placed at regular intervals (elf.. Fig, lb), and that the length of these 
partitions is a random variable with a rectangular probability density. It is easy to see 
that the probability pI that a particle with a diameter I/,, = 2R,, will pass through a 
single partition is given by 

while the probability that the particle will pass through at least II partitions from the 
pore orifice to the depth 14 is proportional to (1 - d,,/d)“. It seems reasonable to 
assume that A is very small compared with the radius of the grain, R,,; we can then 
describe the position of the particle of a given size in the grain by means of a con- 
tinuous dimensionless random variable, a, for which a = 0 if the particle is on the 
grain surface and a = 1 if the particle is in the centre of the sphere. By analogy with 
the preceding illustrative reasoning, we can write for the probability density of this 
random variable the equation 

h(a)da = AxodD (31) 

where h(a)da gives the probability that the particle in the grain can penetrate as far 
as a point between the coordinates a and a -t- da, and 

X= 1 - 4la (32) 

The normalization constant A can be calculated from the condition 

J 

.I 
h(a) da = 1 

0 

a!5 

A =In x/(x- 1) (33) 
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Now. we have to decide the connection between the random variable 0 (or, 
more exactly, between the parameter x of its probability distribution) and the quantity 
Q, which characterizes the position of the assumed impermeable boundary inside the 
particle of the packing, Bearing inmind that the model concepts used idealize the 
actual state to a great extent, the simplest possible solution can be chosen. Let us 
therefore calculate the mean value, r?: 

s I 

a= a h(a) da = 
x(111x - I) -I- I 

0 (n - I)lnx 
. 

(34) 

It can easily be demonstrated that for x + 0 (i.e., for c/,, -+ d), lim B = 0, and for the 
n+l 

other limiting case lim B = l/2. In order to satisfy the requirement 0 < Q < 1 and 
x+1 

with respect to the physical meaning of 2, we put 

c, = I - 2ii (35) 

DISCUSSION 

As pointed out by CasassalO, all GPC theories give for the retention volume 
a relationship analogous to eqn. 26 but differ in the explicit form that they predict for 
fCGDC as a function of relevant parameters of the model. The present theory gives Kopc 
as a product of two factors. The first factor, k, is the equilibrium coefficient that 
characterizes the partitioning of the given component between the mobile phase and 
the grain of the packing (according to the principle of steric exclusion) (c$, eqn. 3b). 
This coefficient has been analysed in detail by Casassa and co-workerslO-l2 and need 
not be discussed here. The second factor, (1 - $), takes into account in an elementary 
way the complicated geometry of the porous packing. 

The s,tructure of the porous grain is, of course, much more complex than is 
implied by the scheme in Fig. la: a large number of interconnected cavities of a 
complicated shape are actually involved, and one may expect that in many instances 
the diffusing molecules could find another, although perhaps very complicated, route 
in order to avoid the obstacle and to penetrate deeper into the grain. In fact, the model 
under consideration includes the assumption that during a comparatively shprt con- 
tact time between the grain and the travelling chromatographic zone, the non- 
uniform cross-section of the pore can effectively play the role of an impermeable 
boundary. (It should be remembered that the characteristic diffusion time is pro- 
portional to the square of the characteristic distance.) In static sorption experiments, 
the contact time between the grain and the surrounding solution is so long that all 
cavities inside the grain may become operative, not excluding the least accessible 
ones. From this viewpoint, the factor 1 - $ in principle has the character of a con- 
tribution of restricted diffusion, so that eqn. 26 may be regarded as a theoretical 
justification of the formal decomposition of Kc,rc into the contributions of steric 
exclusion and restricted diffusion suggested by Yau13 in an effort to bridge the gap 
between the results of measurements of the static partition coefficients and of retention 
volumes on different GPC packings*. 

In this paper, the dependence of Q on the solvent flow-rate is not explicitly 
taken into account (although such an assumption would not be at variance with the 
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procedure used for deriving eqns. 26 and 29). However, it may be said qualitatively 
that I would be an increasing function. which would be in agreement with the 
trend of the dependence of the retention volume on the flow-rate found experimentally 
by Yau er a1.4 and also by Hailer”. 

With respect to the definition of K GPC (eqn. 27) eqn. 29 can be rearranged to 
give 

HE-‘-p = ++ ,,.t.!i.-??!!. 
15 D [I -l- F/KG,,,-]’ ” - G(LJ)1 (36) 

A comparison of the second term of this equation with the relationship describing the 
effect of mass transfer in the stationary phase for the case of a spherical, fully acces- 
sible grain’ leads to the conclusion that condition 3c, reflecting the existence of an 
impermeable boundary inside the grain, will be reflected only in the correction term 
1 - G(Q). Examination of eqn. 23 shows that the function 1 - G(e) is’!%shaped and 
decreases monotonically from unity for ,o = 0 to zero for Q = 1. 

In order to find the extent to which eqn. 29 adequately describes the experi- 
mentally determined dependences of the efficiency of GPC columns on the retention 
volume, the results of Tung and Runyon14 and Smit et a/.lS were considered. In both 
instances, the effect of the polydispersity of polystyrene standards was eliminated by 
using the exact reverse-flow technique suggested by Tung ei a/.lb. However, the de- 
pendence of the column efficiency on VR according to Tung and Runy*on14 exhibits 
a clear extreme in the region of high molecular weights (low elution voluines), while 
a similar dependence given by Smit et a/.14 is monotonic; both types of behaviour 
have been described elsewhere16*17. 

The following assumptions and approximations were introduced in the calcu- 
lations of HETP according to eqn. 29. (a) It was assumed that the molecular-weight 
dependence of the diffusion coeflicient, D, in the packing has the same form as a 
similar dependence in solution. i.e., D = KDM-“~. In calculations for experimental 
data taken from Smit ef u/.*~, who used toluene as solvent, the results of 
Mukherjea and Remmpls were taken for KU and a D, and the decrease in the diffusion 
coefficient in gel as a result of the role played by the obstruction factorlg was respected 
by reducing K,, by 50% (c$, ref. 20). The constants of a similar dependence for poly- 
styrene in tetrahydrofuran (the solvent used by Tung and Runyon14) have not been 
published so far; therefore. aD for this case was calculated by means of the expression 
aD =(I - al,)/3 from the Mark-Houwink exponent an published2’ for this system, 
and KD was chosen so as to make the diffusion coefficients in both solvents coincide 
at an arbitrarily chosen value A4 = 104. (b) In the model of a conical pore, the coef- 
ficient KQ in eqn. 30 was determined so that the exclusion limit, MI,,,,, was first cal- 
culated by linear extrapolation of the calibration curve to the void volume VO. and 
Kc, was determined from eqn. 30 assuming that Q = 1 for M = MI,,. A similar 
procedure was employed for the determination of the mean diameter, d, needed for 
calculations in the model of a pore with a fluctuating cross-section. 

A comparison of experimental datai with the course calculated from eqn. 29 
for both pore models is given in Fig. 3. It is obvious that both models correctly de- 
scribe qualitatively the course of the experimental dependence with an extreme in the 
region of low elution volumes, although the position of this extreme on the Kapc 
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Fig. 3. Comparison of the experimental and calculated dcpcndcnce of HETP on the clution volume 
characterized by the coefficient K apt. Points: data from Tung and Runyon’* (the highest exclusion 
limit of gel IO6 A). I. Calculated for conical pore model; 2, calculated for pore model with fluctuating 
cross-section. 

axis is better represented by the model with a fluctuating cross-section (curve 2). A 
similar comparison for experimental data from Smit et a/.14 (where the first column 
in the series was designated 10’ A) is shown in Fig. 4. In this case, both pore models 
exhibit a virtually indistinguishable course (c&e 2). which again gives a qualitatively 
correct description of the monotonic dependence. 

With respect to the fact that no attempt has been made to adjust the 

HETP, cm 

0.6 - 

Fig. 4. Comparison of the experimental and calculated dependence of HETP on I&c. I, Data from 
Smit et al.ls (&cl with the highest exclusion limit of IO’ A): 2. course calculated according to the present 
theory (both pore models give virtually identical results). 
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numerical values of the individual parameters so that the calculated courses would 
coincide with the experimental data, and also bearing in mind the rather idealized 
models used in the derivation as well as the number of approximations necessary, the 
coincidence between the experimental and calculated curves can be regarded as satis- 
factory. In fact, the very good agreement between the absolute HETP values calculated 
for the pore model with a randomly fluctuating cross-section with the experimental 
data of Tung and RunyonlJ is probably furtuitous, especially as in the derivation of 
eqns. 27 and 29 by the above method, that is, by solving the respective systems of dif- 
ferential equations, it was not possible to take into account the zone broadening due 
to effects in the mobile phase, and in accordance with HermanszL it was necessary to 
assume a piston flow of the solvent through the free cross-section of the column. 
Conflicting evidence exists in the literature on GPC concerning the relative importance 
of mobile phase effects and effects due to permeation on the total zone width : Kelley 
and BillmeyerZ3 and Yau et alax assigned great importance to the non-equilibrium 
mobile phase effects, while the data of Ouano and Biesenberge+ and Hendricksor?” 
indicate that the piston-flow approximation is valid under the normal operating condi- 
tions of GPC columns. In any event, non-equilibrium in the mobile phase definitely 
contributes to the width of the chromatographic zone; it is not difhcult, however, to 
modify eqn. 29 by using a term that adequately describes this contribution. e.g.. in 
the sense of Giddings’ coupling theory 2G. One may say that the present theory of sepa- 
ration of macromolecules by GPC, although it contains several rather rough approxi- 
mations, can correctly describe qualitatively some interesting experimental data that 
previously could not be satisfactorily explained by existing theoretical approaches. 

It should be mentioned in conclusion that eqn. 29 may be of interest not only 
in connection with the model of the separation mechanism on GPC columns discussed 
here, but also as an exact expression of the contribution of mass transfer in the sta- 
tionary phase in chromatographic columns packed with the so-called pellicular car- 
riers (e.g., of the Corasil type). 
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